Stateless Approach to End-to-End Security for the Internet of Things (OSCAR – Object Security Architecture for the IoT)

 $\exists \Box$

Mališa Vučinić �★, Bernard Tourancheau �, Franck Rousseau �, Andrzej Duda �, Laurent Damon ★, and Roberto Guizzetti ★.

augmented

Grenoble Informatics Laboratory, France

★ STMicroelectronics

Montbonnot, November 6th 2014

Security in the traditional Internet (1/2)

Security in the traditional Internet (2/2)

Security in the Internet of Things

life.augmented L I G

Security in the Internet of Things

- Features of the Constrained Application Protocol (CoAP) when secured by DTLS:
 - Group communication i.e. multicast support
 - Asynchronous message exchanges
 - Proxy and caching capabilities
 - Low overhead
 - Header mapping to HTTP

× ± ××

X

OSCAR – concepts behind (1/2) Object Security Architecture for the Internet of Things [1]

7

• Idea 1: A stateless security architecture

- Allows caching, eases group communication and asynchronous exchanges
- Solution: Object security Application data encapsulated within "secured objects"

Protect from communication-related attacks by binding object-security encryption keys with the underlying CoAP header

	-					-
MAC	IPv6	UDP	CoAP	Encrypted Object	Signed Object	FCS

[1] M. Vučinić, B. Tourancheau, F. Rousseau, A. Duda, L. Damon, R. Guizzetti,

OSCAR: Object Security Architecture for the Internet of Things, in: WoWMoM, IEEE, 2014, pp. 1–10.

OSCAR – concepts behind (2/2) Object Security Architecture for the Internet of Things [1]

• Idea 2: Move the burden of security handshake away from sensors

- Introduce a <u>semi</u>-trusted, non-constrained third party that will do the hard work
- Sensors respond with secured objects (resource representations) regardless of the identity of the client

OSCAR – concepts behind (2/2) Object Security Architecture for the Internet of Things [1]

• Idea 2: Move the burden of security handshake away from sensors

- Introduce a <u>semi</u>-trusted, non-constrained third party that will do the hard work
- Sensors respond with secured objects (resource representations) regardless of the identity of the client
- Idea 3: Jointly approach problems of End-to-End security and Authorization
 - Split confidentiality and authenticity trust domains
 - Confidentiality used to provide access-control for group members
 - Authenticity strongly tied to the originator of the information (individual sensor)

G

OSCAR – dive deep (1/2)

10

OSCAR – dive deep (2/2)

Resource representation <u>pre-signed</u> with P's private key

On-the-fly symmetric encryption with key derived from access-secret

CoAP + OSCAR ¹²

- CoAP + OSCAR features:
 - Group communication i.e. multicast support
 - Asynchronous message exchanges
 - Proxy and caching capabilities
 - Low overhead
 - Header mapping to HTTP
 - End-to-End Security
 - Authorization and Access Control

+

Sensor-side Total Energy Consumption 13

OSCAR performs better as a client # >> slot

Conclusions & Future Work 14

- E2E security and authorization framework that supports application requirements
- E2E security even in presence of application-level gateways
- Particularly useful for use-cases where high number of clients per sensor is expected
 - Smart city a very good example
- Future extensions
 - Use-cases that require streaming where constant digital signing is unfeasible
 - Key management and authorization policies

Hvala!* Questions?

*Thanks!